<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
Объяснение:
Для начала следует указать, что модуль числа это расстояние на отрезке между нулем и точкой с этим значением. Поэтому неважно, в какую сторону от нуля мы идем, все равно расстояние будет положительным, отрицательного расстояния не бывает.
1) |5| + |-3| = 5 + 3 = 8
2) |-4| - |-10| = 4 - 10 = -6
3) |-3| + |-6| = 3 + 6 = 9
Действия с неправильными дробями нужно проводить, приведя оба слагаемых в вид неправильной дроби с одинаковым знаменателем.
4) |-1,6| + |-1/4| = 1,6 + 1/4 = 1 12/20 + 5/20 = 1 17/20
5) -2,6 + 3 3/5 = -26/10 + 18/5 = -26/10 + 36/10 = 10/10 = 1
6) 1/2 - (-0.5) = 1/2 + 1/2 = 1.
Минус на минус дает плюс, если из числа вычесть отрицательное число, то можно прибавить к числу модуль этого отрицательного числа.
7) -5,8 - (-4,9) = -5,8 + 4,9 = -0.9
8) -1 1/5 * (-0.6) = -6/5 * -6/10 = 36/50 = 18/25
9) -0,7 * (-0.1) = 0.7 * 0.1 = 0.07
10) 15 - (-3) = 15 + 3 = 18
11) -10 -5 = -15
12) -5 + 5 = 0
13) -1,3 : (-1 1/2) = -13/10 : -3/2 = 13/10 : 3/2 = 26/30 = 13/15
14) -3/5 : (-15/4) = 3/5 : 15/4 = 12/75 = 4/25
х=4+(-8)=-4
у=-1+7=6
СД(-4;6)
середина = (х=-4/2) (у=6/2) = -2;3
ответ А