№1.
№2.
ответ:
№3.
а)
f(x) = 19-2x; D(f) = (-∞;+∞)
б)
g(x) = x+1; D(g) = (-∞;+∞)
в)
y(x) = √x; D(y) = [0;+∞)
г)
y = x²-4; D(y) = (-∞;+∞)
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
Объяснение:
а) При a=-2: |x+1|<2а+1; |x+1|<2·(-2)+1; |x+1|<-3
При a=-2 неравенство не выполняется, так как сам модуль по определению не может быть меньше отрицательного числа.
При a=1: |x+1|<2а+1; |x+1|<2·1+1; |x+1|<3
Если x+1≥0: x+1<3; x<3-1; x<2 - проверка: |1+1|<3; 2<3 - неравенство выполняется.
Если x+1<0: -x-1<3; x>-3-1; x>-4 - проверка: |-3+1|<3; 2<3- неравенство выполняется.
При a=1 неравенство выполняется: -4<x<2⇒x∈(-4; 2).
б) При a=-2: |x+1|>2a+1; |x+1|>2·(-2)+1; |x+1|>-3
При a=-2 неравенство выполняется всегда (смотри выше).
При a=1: |x+1|>2a+1; |x+1|>2·1+1; |x+1|>3
Если x+1≥0: x+1>3; x>3-1; x>2 - проверка: |3+1|>3; 4>3 - неравенство выполняется.
Если x+1<0: -x-1>3; x>-3-1; x>-4 - проверка: |-3+1|>3; 2<3 - неравенство не выполняется.
Следовательно при выполнении неравенства при a=1:
2<x<-4⇒x∈(-∞; -4)∪(2; +∞).