я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))
1) Представим одночлен 5а в виде суммы одночленов: 5а=4а+а.
2) Произведем группировку.
3) Вынесем общий множитель за скобки.
4a²-5a+1 =
= 4a²-(4a + а) +1 =
= 4a²- 4a - а +1 =
= (4a²- 4a) - (а - 1) =
= 4а·(а- 1) - (а - 1) =
= (а-1)·(4а-1)
Вопрос: А каким образом из 4а·(а- 1) - (а - 1) получилось (а-1)·(4а-1)?
4а·(а- 1) - (а - 1) = 4а·(а- 1) - 1·(а - 1) =
выделенные одинаковые скобки (а-1) это и есть общий множитель, его запишем в первых скобках, а во вторых скобках запишем то, что подчеркнуто 4а и -1
= 4а·(а- 1) - 1·(а - 1) = (а-1)·(4а-1)
ответ ниже
Объяснение:
(х^3-8)(х^2-1)=0
Х^3-8=0
Х^2-1=0
Х^3=8
Х^2=1
Х^3=2^3 х=2
Х=-1 х=1