2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
Найдите координаты вершины параболы у=x^2-4x+3 и координаты точек пересечения этой параболы с осями координатвершина:х вершина = -b/2a=4/2=2y вершина = 2^2-4*2+3=-1(2;-1) Точки пересеченияx=0, У=3 точка пересечения с осью ординатх=1, у=0 точка пересечения с осью абциссх=3, у=0 точка пересечения с осью абциссКорни уравнения:Находим дискриминант D = b^2-4ac=16-4*3*1=4находим корниx1= -b + корень из D / 2ax2 = -b - корень из D / 2a x1= 4+2/2=3x2=4-2/2=1 теперь находим уу1=3^2-4*3+3=0y2= 1^2-4*3+3=-8(3;0), (1; -8)
Функция: y=-x+3
a) x=-2 y=-(-2)+3
y=2+3
y=5
ответ: y=5
б) y=4 4=-x+3
-x=-4+3
x=4-3
x=1
ответ: x=1
в) А(0;3)
x=0 y=3
3=0+3
3=3
Точка А(0;3) принадлежит графику функции.
B(2,5;-0,5)
x=2,5 y=-0,5
-0,5=-2,5+3
-0,5≠0,5
Точка B(2,5;-0,5) не принадлежит графику функции.
С(5;⅓)
x=5 y=⅓
⅓=-5+3
⅓≠-2
Точка С(5;⅓) не принадлежит графику функции.
D(-4;7)
x=-4 y=7
7=-(-4)+3
7=4+3
7=7
Точка D(,-4;7) принадлежит графику функции.
ответ: Точки А и D принадлежат графику функции.