Рассмотрим первое уравнение:
Дробь равна нулю, когда числитель равен нулю (то есть каждый множитель может быть равным нулю), а знаменатель не равен нулю:
Ограничение на x взялось из-за корней. Теперь достаточно построить каждый график совокупности в заданных пределах.
Второе уравнение представляет собой прямую, смещённую по оси Oy.
На рисунке красным цветом начерчен график первого уравнения, зелёным — вариации второго. По рисунку видно, что система имеет два решения, если прямая проходит через точку (-2; -4) (не включая такое значение a) и так пробегает до точки (-2; 3), проходит через точку (5; 3), проходит через точку (6; 3) и так пробегает до точки (6; 4) (не включая).
Найдём ключевые значения параметра:
В точке (-2; -4): -2-4-a = 0 ⇔ a = -6;В точке (-2; 3): -2+3-a = 0 ⇔ a = 1;В точке (5; 3): 5+3-a = 0 ⇔ a = 8;В точке (6; 3): 6+3-a = 0 ⇔ a = 9;В точке (6; 4): 6+4-a = 0 ⇔ a = 10.Учитывая рассуждения, получаем ответ.
ответ:
(5x-18)=t, тогда:
4t²-14t+6=0
2t²-7t+3=0
2t²-6t-t+3=0
2t(t-3)-(t-3)=0
(2t-1)(t-3)=0
t1= 0,5, t2= 3
1) 5x-18= 0,5
5x= 18,5
x1= 3,7
2) 5x-18= 3
5x= 21
x2= 4,2
вводим:
x1= 4,2
x2= 3,7
рациональнее использовать метод введения новой переменной