1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R)
2) Функция ни четна, ни нечетна
3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3.
Точки пересечения с осью OY в y = 0
4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0.
5)
Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
+ - +
---------------------|-------------|------------------------>
1 3
Функция возрастает на промежутке: (-∞; 1] ∪ [3; +∞)
Функция убывает на промежутке: [1; 3]
Так как нет наибольших и наименьших значений у функции на всем промежутке, то область значений функции колеблется от (-∞; +∞).
График функции дан во вложениях.