4 - не влияет на знак неравенства, т.к. она больше нуля и ее не учитывают. (x+3)(x-2) имеет корни (нули) х= -3 и х=2 Методом интервалов расставим знаки НЕРАВЕНСТВА на числовой прямой: + - + -3 2 >x Сами корни -3 и 2 не входят, так как неравенство строгое. Теперь рассуждает так: числа из промежутка от + бесконечности до 2 дают значению неравенства знак + (>0) (например, если вместо х взять 9). Числа из промежутка -3 до 2 - знак - (<0), (например при х=-1), а если брать числа от - бесконечности до -3, то произведение опять >0 (+). Значит, решение х (- бесконечность;-3) обьединение с (2, + бесконечность).
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
(x+3)(x-2) имеет корни (нули) х= -3 и х=2
Методом интервалов расставим знаки НЕРАВЕНСТВА на числовой прямой:
+ - +
-3 2 >x
Сами корни -3 и 2 не входят, так как неравенство строгое.
Теперь рассуждает так: числа из промежутка от + бесконечности до 2 дают значению неравенства знак + (>0) (например, если вместо х взять 9).
Числа из промежутка -3 до 2 - знак - (<0), (например при х=-1), а если брать числа от - бесконечности до -3, то произведение опять >0 (+).
Значит, решение х (- бесконечность;-3) обьединение с (2, + бесконечность).