М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Thesanek30rusMaps
Thesanek30rusMaps
11.11.2021 06:59 •  Алгебра

1-cos2a: sina*cosa*ctga незнаю как решить где деление там должна быть черта

👇
Ответ:
nyurachernikov
nyurachernikov
11.11.2021

Формулы:

tga = \frac{sina}{cosa} 

ctga = \frac{cosa}{sina} 

cos2a = 2cos^2a-1 

\frac{1-cos2a}{sinacosactga}=\frac{1-cos2a}{\frac{sinacos^2a}{sina}}=\frac{2-2cos^2a}{cos^2a}=\frac{2(1-cos^2a)}{cos^2a}=2\frac{cos^2a+sin^2a-cos^2a}{cos^2a}=2\frac{sin^2a}{cos^2a}=\2tg^2a 

4,8(5 оценок)
Открыть все ответы
Ответ:
Якорь512
Якорь512
11.11.2021
Решение
y = (корень 4 степени из x^2-5x+6) + (корень 5 степени из x+3)/(корень квадратный из -x+2)
x² - 5x + 6 ≥ 0                          - x + 2 > 0, x < 2, x ∈( - ∞; 2)
x1 = - 1; x2 = 6
x ∈(- ∞; - 1] [6; + ∞)
ответ: D(y) = (- ∞; -1]

2. Упростите выражение ((корень 3 степени из a^2)-(2*корень 3 степени из ab)) / ((корень 3 степени из a^2) - (4*корень третьей степени из ab) + (4*корень 3 степени из b^2))
[(a²)^(1/3) - 2*(ab)^(1/3)] / [(a²)^(1/3) - 4*(ab)^(1/3) + 4(b²)^(1/3)] =
[a^(1/3) *(a^(1/3) - 2b^(1/3)] / [(a^(1/3) - 2b^(1/3)]² = a^(1/3) / [(a^(1/3) - 2b^(1/3)]

3. Решите неравенство: 
(x-1)^(1/6) < -x+3
[(x-1)^(1/6)]^6 < (-x+)^6
4,4(72 оценок)
Ответ:
BlueEyesCatОоак
BlueEyesCatОоак
11.11.2021

1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.

2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.

2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).

Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.

2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.

Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).

ответ: p=2, q=3 или же p=3, q=2.

4,6(90 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ