Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов; называют неполным квадратом суммы; называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
s s |*| Обозначим весь путь 2s, х км в час скорость Семена, у км в час - скорость машины. Тогда на путь от дома до школы Семен тратит t часов, которые равны сумме времени, затраченного на путь на машине и пешком.
(s/x)+(s/y)=t
Если Семён пойдет пешком всю дорогу, то опоздает на пол часа. Т. е на путь 2s cо скоростью х км в час, затратит время t+(30/60).
2s/x=t+(30/60)⇒ s/x=(t/2)+(1/4)
Тогда время, затраченное на проезд половины пути на машине: (s/y)=t-(s/v)=t-(t/2)-(1/4)=(t/2)-(1/4).
Находим время, затраченное на проезд (2/3) пути на машине, т.е. (2/3) от 2s делим на скорость у км в час:
(4s/3y)=(4/3)·(t/2)-(4/3)·(1/4)= (2t/3)-(1/3)
Находим время затраченное на прохождение (1/3) пути пешком машине, т.е. (1/3) от 2s делим на скорость х км в час.
-3, -2,-1, 0
Объяснение: