а) (2х-3)(х+1)>х(кв)+17
2х(кв)-3х+2х-3>х(кв) +17
2х(кв)-х(кв)-3х+2х-3-17>0
х(кв)-х-20>0
х(кв)-х-20=0 D=1+80=81
х1=(1+9)/2=5
х2=(1-9)/2=-4
Теперь подставим в 4 строчку вместо х ноль ( самое удобное число между 5 и -4), чтобы найти, на каком промежутке неравенство становится верным:
0(кв)-0-20 не больше нуля, значит неравенсво верное за пределами чисел -4 и 5, а не между ними.
ответ: (от - бесконечности; -4) объединяется (5; до +бесконечности)
Остальные аналогично (расписывать не буду, слишком много). Доводишь до неравенства с нулём, ищешь удобное число между двумя корнями, проверяешь и находишь промежутки. Если что-то непонятно спрашивай))
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!