М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rasolcheatnet
rasolcheatnet
09.03.2022 02:12 •  Алгебра

Как найти дискриминант, если есть только а и б.

👇
Ответ:
ichi2209
ichi2209
09.03.2022

если нет с то оно равно 0 следовательно Д=b в квадрате -4*a*1

*-умножить

Объяснение:

4,4(79 оценок)
Открыть все ответы
Ответ:
ogorodnikovkir
ogorodnikovkir
09.03.2022

№1.

Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из  корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4

Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.

2·4²- 7·4+а =0

а=28-32

а= - 4

№2.

4х²+ ах + 6 содержит множитель ( 2х + 1)

1)2х+1=0

х= - 0,5 - это первый корень уравнения 4х²+ах+6=0

2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:

х²+0,25ах+1,5=0

3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,

х₁ * х₂ = 1,5

х₂=1,5 : (-0,5)

х₂= - 3

4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.

х₁+х₂= -0,25а

- 0,25а = - 0,5 + (-3)

- 0,25а = - 3,5

а = - 3,5 : (-0,25)

а = 14

4,4(25 оценок)
Ответ:
BrainSto
BrainSto
09.03.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ