Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
Производительность труда Маши 1/6, Лены - 1/3, Элеоноры - 1/2. Тогда производительность труда Маши Лены и Элеоноры: 1/6 + 1/3 + 1/2 = 1/6 + 2/6 + 3/6 = 1. 2/5 работы делала Лена одна за 3*2/5 = 6/5 = 1,2 часа. на троих девочкам осталось выполнить 1 - 2/5 = 5/5 - 2 / 5 = 3/5 работы. С общей производительностью 1 девочки выполнят остаток работы за 3/5 = 0,6 часа. Итого все девочки сделают работу за 1,2 + 0,6 = 1,8 (часа) = 1 час 48 мин.
Так как Маша работала с производительностью 1/3 и работала 0,6 часа, то она выполнила 0,6/3 = 0,2 или одну пятую всей работы.
1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2.
Найдём r = (√3*√3)/2 = 3/2 = 1,5
По теореме Пифагора находим апофему пирамиды:
l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5
ответ: 2,5
2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала
момента будет (t -5) мин.
Решим неравенство:
120 * 2^(-(t - 5)/12) ≤ 7,5
2^(-(t - 5)/12) ≤ 7,5/120
2^(-(t - 5)/12) ≤ 0,0625
2^(-(t - 5)/12) ≤ 2⁻⁴
-(t - 5) / 12 ≤ - 4
t - 5 ≤ 4*12
t ≤ 48 + 5
t ≤ 53 (мин)
ответ: t ≤ 53 (мин)