y = 7x - 6sinx +12
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
Для начала вспомним т. Виетта
для уравнения вида x²+px+q=0
выпоняется : x₁+x₂= -p; x₁*x₂=q
теперь решение:
1) x²-13x+q=0
x₁=12.5
x₁+x₂= -(-13)=13
12.5+x₂=13
x₂=0.5
x₁*x₂=12.5*0.5=6.25= q
тогда уравнение будет x²-13x+6.25=0
2) 10x²-33x+c=0
приведем его к стандартному виду
x²-(33/10)x+(c/10)=0
x²-3.3x+(c/10)=0
x₁=5.3 тогда 5.3+x₂=3.3; отсюда x₂= -2
c/10=5.3*(-2)=-10.6; Значит с= -106
Уравнение будет иметь вид 10x²-33x-106=0
3) x²+2x+q=0
x₁²-x₂²=12
(x₁-x₂)(x₁+x₂)=12
(x₁-x₂)*(-2)=12
x₁-x₂= -6
x₁=x₂-6
Теперь найдем корни
x₁+x₂=x₂-6+x₂=-2
2x₂=4
x₂=2; x₁= -4
тогда q=2*(-4)= -8
Уравнение примет вид x²+2x-8=0
его корни x₁²-x₂²=(-4)²-(2)²=16-4= 12