Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
1 ) Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) Т.е. Это все допустимые значения которые может принимать "х"
2) Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) Т.е. это все допустимые значений которые может принимать "у" в зависимости от "х"
Теперь рассмотрим нашу функцию
f(x)=x²+1
Есть ли такие "х" которые нельзя было бы подставить в нашу функцию и найти значение переменной "у"? - НЕТ так что х∈(-∞;+∞)
теперь рассмотрим у
при х=0; у=0+1=1 при х=1; у=1+1=2 при х= -1; у=(-1)²+1=1+1=2 Значит все возможные значения у∈[1;+∞)
Відповідь:
147м
Пояснення:
за 1 секунду 15 м
за 2 секунду 15+2=17 м
за 3 секунду 17+2=19 м
за 4 секунду 19+2=21 м
за 5 секунду 21+2=23 м
за 6 секунду 23+2=25 м
за 7 секунду 25+2=27 м
за 7 секунд 15+19+21+23+25+27=147 м