1. на фото. Чтобы функция была четной. /нечетной/, надо выполнение двух условий. 1 ) ЕЕ область определения была симметрична относительно начала системы координат.
2) f(-x)=f(x) /f(-x)=f(x)/
1) Областью определения является любое число действительное, подставим вместо х минус икс. получим у(-x)=-8*(-х)+(-х)²+(-х)³=
8*х+х²-х³; f(-x)≠f(x)⇒ не является четной. /f(-x)≠f(x)⇒ не является нечетной/ Это функция общего вида.
2)область определения определим из неравенства х³+х²≥0;
х²*(х+1)≥0; х=0; х=-1.
-10
- + +
Область определения х∈[-1;+∞) не выполняется условие симметрии области определения относительно нуля. это функция ни четная. ни нечетная. т.к. не выполняется условие симметрии области определения относительно нуля.
2. 1)парабола ветвями вниз, значит, наименьшего значения нет. а наибольшее в вершине параболы при х=-1.5
у(-1.5)=-2.25+4.5-6.25=-4
2)парабола ветвями вверх. т.к. старший коэффициент положителен. вершина параболы х=1/2
у(1/2)=1/4-1/2+3.75=0.25+3.75-0.5=3.5 наименьшее значение функции, а наибольшего нет.
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней