Найдём касательные к графику функции y=-0,5x²+3. График указанной функции представляет собой параболу ветви которой направлены вниз, вершина находится в точке с координатами (0;3), ось симметрии совпадает с осью ординат. Касательные (из условия) перпендикулярны друг другу и равны, следовательно угол наклона к оси абсцисс одной из них будет 45°, а другой 135°. Угловой коэффициент k прямой равен тангенсу угла наклона, значит у одной касательной он будет k₁=tg45°=1 а у другой k₂=tg135°=-1 Тогда уравнения касательных примут вид y₁=x+b y₂=-x+b Найдём значение b, для этого приравняем функции y=-0,5x²+3 и y=x+b: -0,5x²+3=x+b -0,5x²+3-x-b=0 -0,5x²-x+(3-b)=0 Уравнение должно иметь один корень, значит дискриминант должен быть равен 0 D=(-1)²-4*(-0,5)*(3-b)=1+2(3-b)=1+6-2b=7-2b=0 -2b=-7 b=3,5 Уравнения касательных будут иметь вид: y=x+3,5 y=-x+3,5 Находим пределы интегрирования. Сначала нижний: -0,5x²+3=x+3,5 -0,5x²-x-0,5=0 D=0 x=1/(-0,5*2)=-1 Теперь верхний: -0,5x²+3=-x+3,5 -0,5x²+x-0,5 D=0 x=-1/(-0,5*2)=1 Найдём площадь фигуры сначала слева от оси ординат, потом справа и сложим их: ед².
x⁴ - 3x² - 4 = 0
x² = t
t² - 3t - 4 = 0
d = 9 + 16 = 25
x² = -1
нет корней
x² = 4
x₁ = 4
x₂ = -4
ответ: x = 4; -4
1 б(x² - 1)(x² + 4x + 3) = 0
x² + 4x + 3 = 0
d = 16 - 12 = 4
ответ: x = 1; -1; -3
2воспользуемся свойством пропорции:
x² - 4 = 0
x² = 4
x = ±4
ответ: x = 4; -4
2 бвоспользуемся свойством пропорции:
x² - 3x - 10 = 0
d = 9 + 40 = 49
ответ: x = -2; 5
2 вответ: x = 1; -4
3(x² + 2x)² + 13(x² + 2x) + 12 = 0
x² + 2x = t
t² + 13t + 12 = 0
d = 169 - 48 = 121
x² + 2x = -12
x² + 2x + 12 = 0
d = 4 - 48 = -44
нет корней
x² + 2x = -1
x² + 2x + 1 = 0
d = 4 - 4 = 0
ответ: x = -1
прости, с 4-ым не смогу .