Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
x = 5
Объяснение:
Вес гири задан условием задачи: в 1-м случае у = 20, во 2-м случае у = 30
Поскольку гиря у = 30 уравновешивает 6 баночек, то
6х = 30
х = 5.
Действительно, 6х = 30 > 20