М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dejavu1337
dejavu1337
02.03.2023 23:45 •  Алгебра

Площа прямокутного листа фанери дорівнює 300 дм2. Його розрізали на дві частини, одна з яких - квадрат, а друга - прямокутник. Знайдіть сторону квадрата, якщо сторона одержаного прямокутника , що не є стороною квадрата дорівнює 5 дм.

👇
Ответ:
aktan012013
aktan012013
02.03.2023

а=15 см - сторона квадрата

Объяснение:

решение во вложении


Площа прямокутного листа фанери дорівнює 300 дм2. Його розрізали на дві частини, одна з яких - квадр
4,6(37 оценок)
Открыть все ответы
Ответ:
tanaletinaaaaa
tanaletinaaaaa
02.03.2023

Преобразуем 2 уравнение:

(x+y)^2-(x+y)=0

(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0

в 1 уравнении делаем замену:

xy=t

получим:

t^2+2t=3

t^2+2t-3=0

D=4+12=16=4^2

t1=(-2+4)/2=1

t2=(-2-4)/2=-3

система разделится на 4 системы

1) xy=1

x+y=0

x=-y

-y^2=1

y^2=-1

y - нет решений

2) xy=1

x+y-1=0

x=1-y

(1-y)y=1

-y^2+y-1=0

y^2-y+1=0

D<0

y - нет корней

3) xy=-3

x+y=0

x=-y

-y^2=-3

y^2=3

y1=sqrt(3)

y2=-sqrt(3)

x1=-sqrt(3)

x2=sqrt(3)

4) xy=-3

x+y-1=0

x=1-y

(1-y)*y=-3

-y^2+y=-3

-y^2+y+3=0

y^2-y-3=0

D=1+12=13

y3=(1+sqrt(13))/2

y4=(1-sqrt(13))/2

x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2

x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2

ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)

Объяснение:

вродебы так

4,6(80 оценок)
Ответ:
Ovaliza
Ovaliza
02.03.2023

ответ:

данные решаются по одному алгоритму.

продемонстрируем на примере первой функции (вторая исследуется аналогично, только функция не определена в точке х=4):

1)

функция не определена в точке x = - 4.

поэтому:

x ∈ (-∞; -4) ∪ (-4; +∞)

2)

находим производную функции:

y'(x) = [(x²+3x)'·(x+4)-(x²+3x)·(x+4)'] / (x+4)²

y'(x) = [(2x+3)·(x+4)-(x²+3x)·1] / (x+4)²

y'(x) = (x²+8x+12) / (x+4)²

3)

приравняем производную к нулю:

x²+8x+12 = 0

x₁ = - 6

x₂ = -2

4)

на интервале x∈(-∞; -6)

y'(x) > 0; функция монотонно возрастает.

на интервале x∈(-6; -4)

y'(x) < 0; функция монотонно убывает.

в точке x = -6 - максимум функции.

y(-6) = - 9

5)

на интервале x∈( -4; -2)

y'(x) < 0; функция монотонно убывает .

на интервале x∈(-2; +∞)

y'(x) > 0; функция монотонно возрастает.

в точке x = - 2 - минимум функции.

y(-2) = -1

6)

для контроля строим график

объяснение:

4,8(20 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ