М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
milaxa1245
milaxa1245
14.04.2020 10:43 •  Алгебра

даю 35 очков. Все кроме 3,4,5,6​

👇
Открыть все ответы
Ответ:
Artur1Khasanov
Artur1Khasanov
14.04.2020
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{-\frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.

ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1
4,6(34 оценок)
Ответ:
fdglksjf
fdglksjf
14.04.2020
1
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2  и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2  и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)
4,4(56 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ