М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maximiva7273737
maximiva7273737
22.07.2020 22:47 •  Алгебра

У магазині виявилося, що з 500 сматрфонів 4- бракованих. Яка ймовірність того, що навмання обраний смартфон: 1) бракований;

2) якісний?

👇
Открыть все ответы
Ответ:
Xonus
Xonus
22.07.2020

2. Исследуем функцию на монотонность и на экстремум:

Критические точки функции:

,

,

Определим знак производной в каждом интервале монотонности:

, точка max, так как производная  изменила знак с "+" на "−",

, точка min, так как производная  изменила знак с "−" на "+".

Вычислим сам экстремум функции в этих точках:

3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:

Критические точки: , , ,  

Определим знак II производной в интервале кривизны:

, значит, кривая выпуклая на промежутке,

, значит, кривая вогнутая на промежутке;

Вычислим ординату точки перегиба:

4. Найдём дополнительные точки графика:

По результатам исследования строим график функции:

Пример 2. Исследовать функцию по первой и второй производной и построить её график:  .

1. Область определения функции ,

точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:

Значит,  точка разрыва рода,

прямая  вертикальная асимптота графика функции.

Найдём наклонную асимптоту графика:

где угловой коэффициент прямой найдём по формуле

Так как  существует, то есть и наклонная асимптота. Вычисляем коэффициент b:

Значит, наклонная асимптота графика имеет уравнение .

2. Исследуем функцию на монотонность и на экстремум:

, учтем правило дифференцирования  

Критические точки функции:

,  , , , х=2,

4,6(47 оценок)
Ответ:
Mei29
Mei29
22.07.2020

Объяснение:

log(3) (5 - 5x) >= log (3) (x^2 -3x + 2) + log (3) (x+4)

log(a) b ОДЗ a>0 b>0 a≠1

итак ищем ОДЗ тело логарифма больше 0

1. 5 - 5x > 0 x < 1

2. x^2 - 3x + 2 > 0

D = 9 - 8 = 1

x12=(3+-1)/2=2 1

(х - 1)(х - 2) > 0

x∈ (-∞ 1) U (2 +∞)

3. x + 4 > 0 x > -4

ОДЗ x∈(-4 1)

так как основание логарифма больше 1, поэтому знак не меняется

5 - 5x ≥ (x^2 - 3x + 2)/(x + 4)

5(1 - x) ≥ (x - 1)(x - 2)/(x + 4)

5(x - 1) + (x - 1)(x - 2)/(x + 4) ≤ 0

(x - 1)(5(x+4)+x-2)/(x+4) ≤ 0

(х - 1)(6x + 18 )/(x+4) ≤ 0

6(х - 1)(x + 3 )/(x+4) ≤ 0

применяем метод интервалов

(-4)[-3] [1]

x ∈(-∞ -4) U [-3 1] пересекаем с ОДЗ x∈(-4 1)

ответ x∈[-3 1)

4,4(73 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ