Сам график не построю, но всё, что нужно для его построения, напишу
Сначала нужно выразить одну переменную через другую:
y - 6x = -25
y = 6x - 25
-y - x = -5
y = 5 - x
Данные функции являются линейными, поэтому их графиками будут прямые, для построения графиков этих функций нужно подставить значение x, и найти при данном значении x значение y (Т.е., к примеру в первой функции при x = 1, y = 6 * 1 - 25 = -19):
y = 6x - 25
Координаты:
x = 1 y = -19
x = 0 y = -25
Координаты найдены, теперь для построения графика нужно отметить точки, соответствующие данным координатам на координатной плоскости, соединить их и вывести прямую за пределы этих точек
То же самое делаешь и со второй функцией:
y = 5 - x
Координаты:
x = 0 y = 5
x = 1 y = 4
Координаты найдены, теперь для построения графика нужно отметить точки, соответствующие данным координатам на координатной плоскости, соединить их и вывести прямую за пределы этих точек
Данные прямые пересекутся, и точка их пересечения будет решением системы уравнений
ответом будет и
В связи с таким ответом вопрос: ты точно всё правильно написал?
№1.
Отметим данные точки и проведём через них прямую.
Прямая пересекает ось Oy в точке ; ось Ox в точке (1,25;0). Подробнее смотри в приложении.
№2.
Точка M(x;y):
расположена в 1 четверти, если x>0 и y>0;
расположена во 2 четверти, если x<0 и y>0;
расположена в 3 четверти, если x<0 и y<0;
расположена в 4 четверти, если x>0 и y<0.
Точка A(-87;89) расположена во 2 четверти т.к. -87<0 и 89>0.
Точка B(3,5;2) расположена в 1 четверти т.к. 3,5>0 и 2>0.
Точка C(0,1;-0,001) расположена в 4 четверти т.к. 0,1>0 и -0,001<0.
Точка D(-1,25;-3,48) расположена в 3 четверти т.к. -1,25<0 и -3,48<0.
1). 0,73222...=0,73(2) - бесконечная смешанная периодическая десятичная дробь.
2). 1,666...=1, (6)
1,30606...=1,3(06)
1,6=6
3). Несократимую дробь можно записать в аиде конечной десятичной дроби и тогда,когда её знаменатель не имеет простых делителей, отличных от 2 и 5.