садовый участок прямоугольной формы площадью 600м квадратных обнесен забором , длина которого 100м . чему равеы стороны участка ? чему равны стороны участка такой же площади , если длина забора вокруг него составляет 140 м ?
Примем
периметр (длина забора) первого участка Р1=100 м
периметр (длина забора) второго участка Р2=140 м
длина первого участка - а1
ширина первого участка - в1
длина второго участка - а2
ширина второго участка - в2
Тогда
(а1+в1)*2=100
(а2*+в2)*2=140
а1*в1=а2*в2=600
а1+в1=50
а1=50-в1
подставляем
а1*в1=600
(50-в1)*в1=600
50*в1-(в1)^2=600
или
-(в1)^2+50*в1-600=0
Решаем с дискриминантом
D=b^2-4*а*с=50^2-4*(-1)*(-600)=100
(В1)1=[(-b-D^(1/2))/2*a=[-50-100^(1/2)]/2*(-1)=(-50-10)/(-2)=30
(В1)2=[(-b+D^(1/2))/2*a=[-50+100^(1/2)]/2*(-1)=(-50+10)/(-2)=20
т.е. ширина первого участка может быть: 30 и 20 м
(а1)1=50-в1=50-30=20 м
(а1)2=50-в1=50-20=30 м
То есть первый участок размерами 20 на 30 м
аналогично решаем и второй участок
а2*в2=600
(а2+в2)*2=140
а2=70-в2
подставляем
а2*в2=600
(70-в2)*в2=600
70*в2-(в2)^2=600
или
-(в2)^2+70*в2-600=0
Решаем с дискриминантом
D=b^2-4*а*с=70^2-4*(-1)*(-600)=2500
(В2)1=[(-b-D^(1/2))/2*a=[-70-2500^(1/2)]/2*(-1)=(-70-50)/(-2)=60
(В2)2=[(-b+D^(1/2))/2*a=[-70+2500^(1/2)]/2*(-1)=(-70+50)/(-2)=10
т.е. ширина второго участка может быть: 60 и 10 м
(а2)1=70-в2=70-60=10 м
(а2)2=70-в2=70-10=60 м
То есть второй участок размерами 10 на 60 м
Проверим:
Периметр второго участка Р2=(10+60)*2=140
140=140
Площадь второго участка = 10*60=600 м^2
600 м^2=600 м^2
Стороны второго участка равны 10 и 60 м
2x²+6x-8=0
x²+3x-4=0
D=3²-4*(-4)=9+16=25=5²
x₁=(-3-5)/2= -4
x₂=(-3+5)/2=1
2x²+6x-8=2(x+4)(x-1)
ответ: Б)
2.
5x²-7x+2=0
D=(-7)² -4*5*2=49-40=9>0
Так как D>0, то квадратный трехчлен имеет два разных корня.
ответ: А)
3.
Разложим знаменатель на множители:
2x²+6x-8=2(x+4)(x-1)
Сокращаем:
[2(x+4)]/[2(x+4)(x-1)]=1/(x-1)
ответ: Г)
4.
Замена переменной:
t=x²
t²=x⁴
t²-3t-4=0
D=(-3)²-4*(-4)=9+16=25=5²
t₁=(3-5)/2= -1 ⇒ x²= -1 ⇒ нет решений
t₂=(3+5)/2=4 ⇒ x²=4 ⇒ x₁=2 и x₂ = -2
ответ: Г)
5.
ОДЗ: х≠ -3
Разложим числитель на множители:
x³-x²-12x=x(x²-x-12)=x(x+3)(x-4)
x²-x-12=0
D=(-1)²-4*(-12)=1+48=49=7²
x₁=(1-7)/2= -3
x₂=(1+7)/2=4
Сокращаем:
[x(x+3)(x-4)]/(x+3) =0
x(x-4)=0
x=0 x-4=0
x=4
ответ: В)
6.
ОДЗ: x²+x-2≠0 ⇒ x≠ -2 и х≠ 1
D=1² -4*(-2)=1+8=9=3²
x₁=(-1-3)/2= -2
x₂=(-1+3)/2=1
2x²-x-1=x²+x-2
2x²-x²-x-x-1+2=0
x²-2x+1=0
(x-1)²=0
x-1=0
x=1 - не подходит по ОДЗ
нет решений
ответ: В)
7.
x²+2x+1=(x+1)²
x²-1=(x-1)(x+1)
ОДЗ: x≠ -1 и x≠1
Общий знаменатель: (x-1)(x+1)²
3(x-1)+2(x+1)=(x+1)²
3x-3+2x+2=x²+2x+1
-x²+5x-2x-1-1=0
-x²+3x-2=0
x²-3x+2=0
По т. Виета:
x₁=1 - не подходит по ОДЗ
x₂=2
ответ: 2.
8.
ОДЗ: х≠0 и x²-x-6≠0 ⇒ x≠ -2 и х≠3
x²-x-6=0
По т. Виета:
x₁=-2
x₂=3
Замена переменной:
t=(x²-x-6)/x
1/t=x/(x²-x-6)
t - (8/t) =2
ОДЗ: t≠0
t² -8=2t
t²-2t-8=0
D=(-2)² -4*(-8)=4+32=36=6²
t₁=(2-6)/2= -2
t₂=(2+6)/2=4
При t= -2
(x²-x-6)/x = -2
x²-x-6= -2x
x²-x+2x-6=0
x²+x-6=0
D=1²-4*(-6)=1+24=25=5²
x₁=(-1-5)/2= -3
x₂=(-1+5)/2=2
При t=4
(x²-x-6)/x=4
x²-x-6=4x
x²-x-4x-6=0
x²-5x-6=0
D=(-5)²-4*(-6)=25+24=49=7²
x₁=(5-7)/2=-1
x₂=(5+7)/2=6
ответ: -3; -1; 2; 6.