у/5.
Объяснение:
Упростите выражение:
(x+4)/(x-3) * (3x-9)/(x²+8x+16) : 15/(xy+4y)=
1)(x+4)/(x-3) * (3x-9)/(x²+8x+16)=
В числителе второй дроби вынести 3 за скобки, в знаменателе второй дроби квадрат суммы, свернуть:
=(x+4)/(x-3) * [3(x-3)]/(x+4)²=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй, а знаменатель первой дроби умножить на знаменатель второй:
=[(x+4)*3(x-3)] / [(x-3)*(x+4)(x+4)]=
сокращение (x+4) и (x+4) на (x+4), (x-3) и (x-3) на (x-3):
=3/(x+4);
2)3/(x+4) : 15/(xy+4y)=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
=[3*у(x+4)] / [(x+4)*15]=
сокращение (x+4) и (x+4) на (x+4), 3 и 15 на 3:
=у/5.
ответ:ответ: x₀ ≅ 1,3.
Объяснение: СЛУШАЮ !
y = f(x) =ax² +bx + c
-5 = a*0² +b*0 + c ⇒ c = - 5 ; y = f(x) =ax² +bx - 5
9 =a*4² +b*4 - 5 ; {16a +4b =14 ;
-2 = a*(-4)²+b(-4) -5. {16a -4b = 3 . || a =(3+4b)/16
16a +4b -(16a -4b) = 14 -3 ⇔8b =11 ⇒b =11/8 из 2-го уравнения
a = (3+4b)/16 = (3+4*11/8)/16 = (3+11/2)/16 = 17/32
у = (17/32)x² +(11/8)x - 5
Абсциссу вершины параболы будет :
x₀ = - b/2a = -(11/8) / 2(17/32) = -(11/8) / (17/16) = - (11*16)/(8*17) = -22/17 ≅1,3.
Поставиш свои числа