Рассмотрим вертикальные линии и горизонтальные. Каждую из них диагональ пересекает ровно один раз. При этом каждое пересечение вертикальной или горизонтальной линии соответствует пересечению двух (соседних) клеток. Посчитаем сумму вертикальных () и горизонтальных клеток (
): каждая клетка, которую пересекают (кроме двух крайних), считается дважды (она дважды участвует в паре), но также каждое пересечение считается дважды. Поэтому
есть количество пересеченных клеток (мы добавили двойку в числителе вот почему: 2(v+h) - это удвоенное количество средних клеток (т.е. не крайних), а крайние посчитаны только один раз. Добавляя 2, мы считаем и крайние два раза. Теперь все клетки посчитаны дважды — можем делить на 2)
Пусть дан прямоугольник , причем числа
не имеют общих делителей (иначе какая-то клетка пересекалась бы по вершине — мы ее не считали). Тогда
,
. Получаем
пересеченная клетка. Поскольку числа 239 и 566 не имеют общих делителей, к ним применима эта формула. Получаем, что диагональ пересекает 239+566-1=804 клетки
* * * * * * * * * * * * * * * * * * * * * * *
Используя теорему Безу, найдите остаток от деления многочлена x³+2x² -13x+10 на x - 2.
ответ: 0.
Объяснение: P(x) =(x - a)*Q(x) +R ⇒ R = P(a)
x³+2x² - 13x+10 = (x - 2) * (Ax²+Bx +C) + R ; R_остаток
x =2. 2³ +2*2² -13*2 +10 = (2-2) * (Ax²+Bx +C) + R ⇒ R =0
* * * * * * * * * * * * * * * * * * * * * * * *
x=2 является корнем многочлена P(x) = x³+2x² -13x+10
т.к. 2³ +2*2² -13*2 +10 =8+ 8 - 26 +10 = 0
* * * ! 2 является делителем свободного члена_10 * * *
следовательно x³+2x² -13x+10 делится на (x-2) ,без остатка
* * * остаток равен нулю * * *
x³+2x²-13x+10 = (x -2) (x² +4x - 5)
* * * x³+2x²-13x+10 =x³ - 2x²+4x² -8x -5x +10 =
x²(x-2) +4x(x -2) -5(x-2) = (x-2) (x²+4x -5) = (x-2)(x-1)(x+5)
* * * Делить можно а также столбиком или по схеме Горнера * * *
корни { -5 ; 1 ; 2} являются делителями свободного члена