1. График функции - квадратная парабола с коэффициентом сжатия по оси Х, равным 3.5, направленная ветвями вниз и смещенная по оси Y вниз на 2.6. График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях. 2. Выполним преобразования. y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2 График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6. Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5