Решение системы уравнений х=2
у=2
Да, является.
Объяснение:
Запишите систему уравнений 2х-у=2 и 3х+2у=10 является ли пара чисел (2;2) решением этой системы?
Решить систему уравнений:
2х-у=2
3х+2у=10
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=2-2х
у=2х-2
3х+2(2х-2)=10
3х+4х-4=10
7х=10+4
7х=14
х=2
Теперь вычислим у:
у=2х-2
у=2*2-2=2
у=2
Решение системы уравнений х=2
у=2
Да, является.
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)