Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ (Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс) __-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
Синус на промежутке возрастает, а на промежутке - убывает
так как функция синуса периодична с периодом , то: - промежутки возрастания синусоиды и - промежутки убывания синусоиды
Что бы в этом убедится, предлагаю внимательно рассмотреть график синусоиды и/или тригонометрический круг
точка и точка - одна и та же точка на тригонометрическом круге
Что бы ответить на вопросы задания, осталось посмотреть, в какие промежутки попадают углы: и у нас углы оба угла попадают в промежуток убывания. Так как это промежуток убывания, то если выполняется , то будет выполнятся у нас: и тогда
Суть разобрали, и дальше легче. Да и если углы из промежутка возрастания, то если , то выполняется --------------------------------------- углы 13п/7 и 11п/7 оба попадают в промежуток возрастания значит sin( 13п/7 ) > sin ( 11п/7 ) -------------------------------------------- оба угла -8п/7 и -9п/8 попадают в интервал убывания -8п/7 < -9п/8, по этому sin(-8п/7) > sin(-9п/8) ---------------------------------------------- оба угла 7 и 6 попадают в промежуток возрастания 7 > 6 sin(7) > sin(6)
Находим нули функции:
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ
(Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс)
__-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
x∈(-3;-2)∨(2;3)∨(4; +∞)