1.) Задачу можно представить как задачу на нахождение суммы n членов арифметической прогрессии. Первое натуральное число, кратное 4, - это 4. Значит первый член арифметической прогрессии a1 = 4. Разность прогрессии d = 4 (чтобы выполнялось условие кратности 4-м). Для того, чтобы найти сумму, необходимо определить количество членов прогрессии. Известно, что последний член не должен превышать 150, а значит an ≤ 150 an = a1 + (n - 1)d a1 + (n - 1)d ≤ 150 4 + (n - 1)4 ≤ 150 1 + (n - 1) ≤ 37,5 n ≤ 37,5 Но n - целое число. Значит n = 37. Тогда an = 4 + (37 - 1)4 = 148 Формула суммы n членов арифметической прогрессии S = (a1+ an)n/2 S = (4 + 148)37/2 = 2812
ответ: а = 5
Только при а = 5, если а = -5, значит знаменатель = 0, а на 0 делить нельзя.