Вот система уравнений: Ц*Ч=В (Ц-Х)*(Ч+0,25*Ч)=В+0,125*В где Ц - цена входного билета (изначально), Ч - число зрителей, В - выручка, Х - на сколько снизилась цена бета Преобразуем систему: Ц*Ч=В или Ч=В/Ц (Ц-Х)*1,25*Ч=1,125*В Подставим: (Ц-Х)*1,25*В/Ц=1,125*В Разделим обе части уравнения на В (т. к. В (выручка) на равна 0): (Ц-Х)*1,25/Ц=1,125 Раскроем скобки: 1,25-1,25*Х/Ц=1,125 Подставим вместо Ц значение Ц = 20: 1,25-1,25*Х/20=1,125 1,25-0,0625*Х=1,125 1,25-0,0625*Х=1,125 0,125=0,0625*Х Х=2 Новая цена, равная Ц-Х=20-2=18.
Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀. 1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства |x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем 2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства 2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
Объяснение:
(x+6)×(x-5)=0
x+6=0 x-5=0
x=-6 x=5
ответ: x=-6, x=5