Пояснение: В данном уравнение нужно использовать перенос чисел через знак = Так же используем свойство, что при переносе через знак =, знаки чисел(букв) меняются на противоположные. То есть если число было положительным, то при переносе через знак = число станет отрицательным. Буквы в одну сторону, цифры в другу. Мы -4 переносим к 5 через знак =, -4 становиться положительным = 4, так и 4х мы переносим к иксам, следовательно 4х тоже меняет свой знак на противоположный = -4х Дальше просто вычисляем, и в конце получаем уравнения начальной школы. -3х=9 Мы 9 : (-3) = -3. Так как, при умножении или деление положительного числа на отрицательное, положительное приобретает знак минус.
~Не за что. Ваша Нана оцените мой ответ, и нажмите на синию кнопочку " "~
D(y)=[-2;+∞)- область определения данной функции. Cоставим уравнение касательной к кривой в точке z y(z)=√(z+2); y`(x)=1/2√(x+2) y`(z)=1/2√(z+2) Уравнение у-у(z)=y`(z)(x-z) y-√(z+2)=(x-z)/2√(z+2) Найдем точки пересечения касательной с осями координат При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2) При у=0 x-z=-2(z+2) ⇒x=-z-4 Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)| Площадь прямоугольного треугольника находим по формуле как половину произведения катетов: S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2) S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2) S`(z)=0 3z+4=0 z=-4/3 y(-4/3)=√((-4/3)+2)=1/√3 О т в е т.(-4/3; 1/√3)
Объяснение:
=======