До ть виконати. ВАРІАНТ 2 1.Обчислити інтеграл і 3. В скринці лежать 12 білих , і 8 червоних однакових на дотик кульок. Вийнято навмання одну кульку. Яка ймовірність того,що вона не біла???
Часовая и минутная стрелки догоняют друг друга раз в 65 минут. Если они догоняют друг друга раз в 66 минут, то часы спешат на 1 минуту. Или же, если очень-очень точно считать, то, когда минутная проходит час от часовой, то проходит 60 минут, но минутная впереди на 5 минут. Когда минутная доходит до того 65-отрезка, то часовая еще 5/12 минут... и так очень долго будет продолжаться, пока геометрическая прогрессия не достигнет некоего предела. У меня получилось, что часы спешат на 6/11 минут, но вряд ли тут про это спрашивают). Хотя задача интересная.
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Часовая и минутная стрелки догоняют друг друга раз в 65 минут. Если они догоняют друг друга раз в 66 минут, то часы спешат на 1 минуту. Или же, если очень-очень точно считать, то, когда минутная проходит час от часовой, то проходит 60 минут, но минутная впереди на 5 минут. Когда минутная доходит до того 65-отрезка, то часовая еще 5/12 минут... и так очень долго будет продолжаться, пока геометрическая прогрессия не достигнет некоего предела. У меня получилось, что часы спешат на 6/11 минут, но вряд ли тут про это спрашивают). Хотя задача интересная.