11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.