М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Hotaru385
Hotaru385
08.07.2022 00:52 •  Алгебра

решить и № 890
( № 889):
а) х⁴ - 9 =
б) 25 - n6 =
в) m^8 - a² =
г) y² - p⁴ =
д) c^6 - d^6 =
е) x^6 - a^4 =
( № 890):
Решите уравнение:
а) х² - 16 = 0
б) y² - 81 = 0
в) 1/9 - x² = 0
г) а² - 0,25 = 0
д) b² + 36 = 0
е) х² - 1 = 0

👇
Ответ:
alibaevaalina146
alibaevaalina146
08.07.2022

а)(x^2 - 3)*(x^2+3)

б) (5-n^3)*(5+n^3)

в) (m^4-a)*(m^4+a)

г) (y-p^2)*(y+p^2)

д)(c^3-d^3)*(c^3+d^3)

е) (x^3-a^2)*(x^3+a^2)

890

а) (x-4)(x+4)=0 x=+-4(то есть два ответа один с плюсом другой без)

б) (y-9)(y+9)=0 x=+-9

в) (1/3-x)(1/3+x)=0 x=+-1/3

г) (a-0.5)(a+0.5)=0 a=+-0.5

д) b=-36 следовательно b принадлежит пустому множеству

е) (x-1)(x+1)=0 x=+-1

Объяснение:

4,6(44 оценок)
Открыть все ответы
Ответ:
паша5808989
паша5808989
08.07.2022

Дано неравенство: 6x² − x - 5 > 0.

Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.

Квадратное уравнение, решаем относительно x:

Ищем дискриминант:

D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;

Дискриминант больше 0, уравнение имеет 2 корня:

x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;

x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.

откуда x1 = 1 и x2 = -(5/6).

Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:

ОО⟶Х

-5/6 1

Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков

+ – +

ОО⟶Х

-5/6 1

Получаем: x < -5/6 или x > 1.

4,8(16 оценок)
Ответ:
STALKER18KEK
STALKER18KEK
08.07.2022

1. С графика квадратичной функции.

x² + 3x - 18 < 0.

Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.

Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.

Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).

2. Методом интервалов.

Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.

x² + 3x - 18 < 0

Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, x² + 3x - 18 = (х - 3)(х + 6).

Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).

Множество решений неравенства: х∈(-6; 3).

ответ:(-6; 3).



Решите неравенство используя график квадратичной функции и метод интервалов: x^2+3x-18< 0
4,6(16 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ