Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника.
2) теорема Пифагора.
3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины.
Пусть сторона данного треугольника a=(V3).
Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора:
a^2 = (a/2)^2 + h^2;
h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2).
h = a*(V3)/2,
Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е.
R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.