То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных. Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством, достаточно найти одно допустимое значение переменной, при котором, получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2 m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2 m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2 m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева
и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством,
достаточно найти одно допустимое значение переменной, при котором,
получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2
m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2
m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2
m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
(-m+n)^2=(m+n)^2
m^2-2mn+n^2=m^2+2mn+n^2
И так же делаешь остальные два.