1. График функции - квадратная парабола с коэффициентом сжатия по оси Х, равным 3.5, направленная ветвями вниз и смещенная по оси Y вниз на 2.6. График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях. 2. Выполним преобразования. y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2 График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6. Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.
Два графика линейной функции имеют вид: у₁=к₁х₁+С₁ и у₂=к₂х₂+С₂
они будут пересекаться если не параллельны, а чтобы они не были параллельны К₁ не должен быть равен К₂, потому что если К₁=К₂ - графики параллельны (например у=5х+2 и у=5х-10 будут параллельны , так как к₁=к₂=5 ) чтобы найти точки пересечения графиков, надо привести их к виду у=кх+С, приравнять правые части и из полученного уравнения найти Х, потом Х подставить в любое из уравнений и найти У, точка с этими координатами (Х; У) - и есть точка пересечения найти точку пересечения графиков у=-3х+3 и у=2х+8 приравняем правые части -3х+3 = 2х+8 все с Х перенесем влево, все без икс - вправо -3х-2х=8-3 -5х=5 х=-1, подставим х=-1 в любое уравнение , например у=-3*(-1)+3 =6, у=6 х=-1, у=6 А(-1;6) точка пересечения
График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях.
2. Выполним преобразования.
y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2
График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6.
Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.