Ну если И так просите Пусть a[0] = 2k + 1 - первое число в последовательности n нечетных. Тогда вся последовательность задается формулой: a[n] = a[n-1] + 2 = а[0] + (n - 1)*2, где 2 - разность между двумя ближайщими нечетными числами. Это формула для n-го члена арифметической прогрессии с разностью d = 2 и первым членом a[0] = 2k + 1.
Сумма первых n членов этой прогрессии равна S(n) = (a[0] + a[n-1])*n/2 = (a[0] + a[0] + (n - 2)*2)*n/2 = (2*(2k + 1) + (n - 2)*2)*n/2 = n*(2k + n - 1).
Следовательно, S(n) = n*(2k + n - 1) = n*p делится на n.
При решении линейных неравенств, переносим все известные вправо, а неизвестные влево. При переносе через знак неравенства необходимо изменить знак слагаемого на противоположный. т.е. а-2 < 3а а - 3а < 2 (<- перенесли 3а со знаком минус, а 2 перенесли со знаком плюс) Далее необходимо привести подобные слагаемые. От а отнять 3а. -2а < 2 Разделим обе части неравенства на -2. При делении/умножении на отрицательное число знак неравенства изменится на противоположный, т.е. -2а : (-2) > 2: (-2) a > -1 ответ: (-1; +∞)
Ну если И так просите Пусть a[0] = 2k + 1 - первое число в последовательности n нечетных. Тогда вся последовательность задается формулой: a[n] = a[n-1] + 2 = а[0] + (n - 1)*2, где 2 - разность между двумя ближайщими нечетными числами. Это формула для n-го члена арифметической прогрессии с разностью d = 2 и первым членом a[0] = 2k + 1.
Сумма первых n членов этой прогрессии равна S(n) = (a[0] + a[n-1])*n/2 = (a[0] + a[0] + (n - 2)*2)*n/2 = (2*(2k + 1) + (n - 2)*2)*n/2 = n*(2k + n - 1).
Следовательно, S(n) = n*(2k + n - 1) = n*p делится на n.