Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных. Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством, достаточно найти одно допустимое значение переменной, при котором, получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2 m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2 m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2 m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
Данное уравнение НЕЛЬЗЯ РЕШИТЬ ПО ТЕОРЕМЕ ВИЕТТА, поскольку ОНО НЕ ПРИВЕДЕННОЕ, А ТАК, РЕШЕНИЕ ЧИТАЕМОЕ.
Записываем исходное уравнение:
5х^2 - 9х - 2 = 0
Решаем через дискриминант:
D = b^2 - 4ac
D = 81 - 4*5*(-2) = 81 - 4*(-10) = 81 - (-40) = 81 + 40 = 121
Sqrt(D) = sqrt(121) = 11
Находим корни уравнения:
х1 = (-b + sqrt(D))/2a = (9 + 11)/10 = 20/10 = 2
x2 = (-b - sqrt(D)/2a = (9 - 11)/10 = -(2/10) = -0,2