М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Amirmusta
Amirmusta
18.03.2020 03:56 •  Алгебра

4sin^2альфа -5cos^2альфа ,если вычислить​

👇
Открыть все ответы
Ответ:
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{-\frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.

ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1
4,6(61 оценок)
Ответ:
anastasiyaaldo
anastasiyaaldo
18.03.2020
 log₉ (2-x) - log₁₅ (2-x) 
 ≤ log₂₅ 9
 log₁₅ (x) - log₂₅ (x) 

ОДЗ :
1) знаменатель не должен быть равен 0
    значит log₁₅ (x) - log₂₅ (x) ≠0 ⇒ х≠1  
2) 2-х >0  x<2
3) x>0
 учитывая вышеуказанные ограничения х∈(0;1)∪(1;2)

 заметим  , что  правая часть неравенства  больше 0 ,㏒₂₅9>0,          значит левая часть должна быть меньше   0 , то есть  

{ log₉ (2-x) - log₁₅ (2-x) >0 ,  log₁₅ (x) - log₂₅ (x) <0  
либо
{  log₉ (2-x) - log₁₅ (2-x) <0 ,  log₁₅ (x) - log₂₅ (x) >0  

1. если  х∈(0;1), то  log₁₅ (x) < log₂₅ (x) , a log₉ (2-x) > log₁₅ (2-x) значит 
в правой части получим отрицательное значение , условие выполняется

2. если  х∈(1; 2), то  log₁₅ (x) > log₂₅ (x) , a log₉ (2-x) <  log₁₅ (2-x) значит 
в правой части получим отрицательное значение , условие выполняется
 
 получили  х∈(0;1)∪(1;2) 
4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ