М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GameOverYouTube
GameOverYouTube
13.02.2022 20:40 •  Алгебра

1.Решите уравнение: а) 5х2 – 10 = 0; б) х2 + 4х = 0; в) 3х2 + 7х + 2 = 0; г) х2 – 8х + 12 = 0;
д) х2 + х + 3 = 0; е) (2х - 1)(2х + 1) – (х - 3)(х + 1) = 18.
2.Найдите сумму и произведение корней х
2 + 7х – 4 = 0.
3.Число -6 является корнем квадратного уравнения х
2 + bх – 6 = 0. Найдите второй корень и
значение b.
4.Корни квадратного уравнения х
2 – 4х + р = 0 удовлетворяют условию 2х1+ х2 = 1. Найдите
значение р.

👇
Ответ:
araydaribayaray
araydaribayaray
13.02.2022

. .. . .. . ..                        ..                            .  


1.Решите уравнение: а) 5х2 – 10 = 0; б) х2 + 4х = 0; в) 3х2 + 7х + 2 = 0; г) х2 – 8х + 12 = 0; д) х2
4,6(29 оценок)
Открыть все ответы
Ответ:
llopatniseva
llopatniseva
13.02.2022

104.

a) cos 120 = -\frac{1}{2}

б) sin(-150)= -sin 150= -\frac{1}{2}

в) tg(-225)= -tg 225 = -1

г) cos(-225)=cos 225= -\frac{\sqrt{2} }{2}

д) cos \frac{7}{6}\pi= cos 630 = 0

е)sin \frac{4\pi }{3} = sin 240 =-\frac{\sqrt{3} }{2}

106.

а) sin (\alpha-\frac{3\pi }{2}) = sin (\alpha-270) = sin (270-\alpha) = -cos \alpha

б) cos (\alpha-\frac{3\pi }{2})= cos (\alpha-270) = cos (270-\alpha) = -sin \alpha

в) tg (\alpha-2\pi) = tg (\alpha-360) = tg (360-\alpha) = -tg \alpha

Объяснение:

      104.

cos(-α)= cos α

sin(-α)= -sin α

tg(-α)= -tg α

ctg(-α)= -ctg α

a) cos 120 = -\frac{1}{2}

б) sin(-150)= -sin 150= -\frac{1}{2}  ( т.к. sin непарная функция =>  sin(-α)= -sin α  )

в) tg(-225)= -tg 225 = -1    ( т.к. tg непарная функция =>  tg(-α)= -tg α  )

г) cos(-225)=cos 225= -\frac{\sqrt{2} }{2}  ( т.к. cos парная функция =>  cos(-α)= cos α  )

д) cos \frac{7}{6}\pi = \frac{7*180}{2}=630, 630=360+270 ( 360 это один полный оборот)  

=> cos 270    cos 270 = 0

е)sin \frac{4\pi }{3} = sin 240 =-\frac{\sqrt{3} }{2}

      106.

В этом номере я использовал формулы приведения

их можно найти в интернете

\pi=180°

а) sin (\alpha-\frac{3\pi }{2}) = sin (\alpha-270) = sin (270-\alpha) = -cos \alpha

б) cos (\alpha-\frac{3\pi }{2})= cos (\alpha-270) = cos (270-\alpha) = -sin \alpha

в) tg (\alpha-2\pi) = tg (\alpha-360) = tg (360-\alpha) = -tg \alpha

4,8(23 оценок)
Ответ:
Fjk123cg
Fjk123cg
13.02.2022
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C 
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1  -  верно

б) ∫[4x/√(x^2+4)]dx=    [ (x^2+4)=t     dt=2xdx ]   =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4)  -  верно

в) ∫-2xe^xdx  =-2 ∫xe^xdx= [ x=u         e^xdx=dv  ]
                                           [ dx=du       e^x=v      ]

-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
4,8(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ