x = 5, y = 2
Объяснение:
Метод сложения — это когда мы делаем так, чтобы можно было сократить одно из неизвестных в системе. То есть, нам нужно умножить одно из уравнений на такое число, чтобы при сложении с другим уравнением сократилось одно неизвестное (x или y)
Я умножил нижнее уравнение на -3, потому что сверху у меня стоит неизвестное 3x, а чтобы его сократить, надо его сложить с -3x
Складываем уравнения, то есть часть, находящуюся слева от равно первого уравнения прибавляем к левой части второго, так же и с правыми частями:
3x + 2y - 3x - 15y = 19 - 45
-13y = -26
y = 2
Подставляем полученный y в одно из уравнений, например, в первое:
3x + 2*2 = 19
3x = 15
x = 5
29 км/час скорость лодки в стоячей воде
Лодка по течению до встречи 67,2 (км)
Лодка против течения до встречи 54,6 (км)
Объяснение:
Задача2.
х = скорость лодки в стоячей воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
Общая скорость лодок до встречи: 121,8 (общее расстояние) : 2,1 (общее время) = 58 (км/час).
(х + 3) + (х - 3) = 58
2х = 58
х = 29 (скорость лодки в стоячей воде).
Лодка по течению до встречи: (29 + 3) * 2,1 = 67,2 (км)
Лодка против течения до встречи: (29 - 3) * 2,1 = 54,6 (км)
Проверка: 67,2+54,6=121,8 (км), всё верно.
Уравнение
3у/8-14 = -13+y/8 Избавляемся от дробного выражения, общий знаменатель 8:
3у-8*14= 8 8(-13)+у
3у-112= -104+у
3у-у= -104+112
2у=8
у=4
f(x)=f(4) => x=4
f(4)=7/4=1,75