Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Объяснение найти правильный ответ
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)