I этап. Постановка задачи и составление математической модели.
Пусть собственная скорость катера х км/ч , а скорость течения реки у км/ч. Тогда расстояние , которое пройдет катер по течению реки 1,5(х+у) км . Расстояние , которое пройдет катер против течения реки 2,25(х-у) км (т.к. 2 ч. 15 мин. = 2 15/60 ч. = 2,25 ч.) Зная, что расстояние между пристанями составляет 27 км. Составим систему уравнений: {1.5(x+y) =27 {2.25(х-у) = 27 Полученная система уравнений - математическая модель задачи.
II этап. Работа с математической моделью. Решение системы уравнений: {1.5 x + 1.5y = 27 |×1.5 {2.25 x - 2.25y = 27
{2.25x + 2.25y = 40.5 {2.25x - 2.25y = 27 Метод алгебраического сложения. 2,25 х + 2,25у + 2,25х -2,25 у = 40,5 +27 4,5х = 67,5 х= 67,5 : 4,5 х= 15 Выразим из первого уравнения системы у через х : y=(27:1,5 ) - х= 18-х у=18-15=3
III этап. Анализ результата. Собственная скорость лодки 15 км/ч ; скорость течения 3 км/ч. Проверим решение: 1,5 (15+3) = 2,25(15-3) = 27 (км) расстояние между пристанями
ответ: 15 км/ч собственная скорость лодки , 3 км/ч скорость течения.
Х т - должна по плану собрать 1-я бригада (400 - х) т - должна по плану собрать 2-я бригада 15% это 0,15 100% + 15% = 115% это 1,15 5% это 0,05 100% - 5% = 95% это 0,95 1,15х т - собрала 1-я 0,95 * (400 - х) т - собрала 2-я Уравнение 1,15х + 0,95 + (400 - х) = 428 1,15х + 380 - 0,95х = 428 0,2х = 48 х = 48 : 0,2 х = 240 т - должна по плану собрать 1-я бригада 400 - 240 = 160 т - должна по плану собрать 2-я бригада
Проверка 1,15 * 240 + 0,95 * 160 = 428 276 + 152 = 428 428 = 428 всё правильно ответ 240 т
Объяснение:
3a^2-16