При каких значениях s трёхчлен −s2−13s−136 принимает неотрицательные значения? Выбери правильный вариант ответа: s∈(−∞;−16) s∈(−∞;−16]∪[0;+∞) другой ответ
Если необходимо найти при каких значениях параметра Р уравнение имеет два корня, один корень, не имеет корней, то надо найти дискриминант и ... далее решение: D=(-2(p-1)²-4*4p²=4(p-1)²-16p²=4((p-1)²-4p²)=4(p-1-2p)(p-1+2p)=4(-1-p)(3p-1) Далее приравниваем D к 0, в этом случае уравнение будет иметь один корень: 4(-p-1)(3p-1)=0 -p-1=0 3p-1=0 -p=1 3p=1 p=-1 p=1/3 Уравнение будет иметь один корень при р=-1 или р=1/3
Если D>0, уравнение имеет два корня 4(-p-1)(3p-1)>0 -p-1>0 -p>1 p<-1 3p-1>0 3p>1 p>1/3
-p-1<0 -p<1 p>-1 3p-1<0 3p<1 p<1/3 Уравнение имеет два корня при р∈(-1;1/3)
Если D<0 уравнение не имеет корней 4(-p-1)(3p-1)<0 -p-1<0 -p<1 p>-1 3p-1>0 3p>1 p>1\3
-p-1>0 -p>1 p<-1 3p-1<0 3p<1 p<1/3 Уравнение не будет иметь корней при р∈(-∞;-1)∪(1/3;∞)
3cos²7x+sin7x-1=0 ;
3(1-sin²7x)+sin7x -1=0 ;
3sin²7x -sin7x-2 =0 ; * * * замена t = sin7x * * *
3t² -t -2 =0 ; * * * D =1²-4*3*(-2) =5²
t₁=(1-5)/(2*3) =-2/3 ;
t₂=(1+5)/(2*3) =1.
а)
sin7x = -2/3 ⇒7x =(-1)^(n+1) arcsin(2/3) +πn ;
x =(1/7)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin7x =1⇒7x =π/2 +2πn , n∈Z
x =π/14 +2πn/7, n∈Z .
2)
8-6cos²5x+7sin5x=0 ;
8 -6(1-sin²5x+7sin5x=0 ;
6sin²5x+7sin5x +2 =0
[ sin5x= -2/3 ; sin5x = -1/2.
а)
sin5x = -2/3 ⇒5x =(-1)^(n+1) arcsin(2/3) +πn ,n∈Z ;
x =(1/5)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin5x = -1/2 ⇒5x =(-1)^(n+1)*(π/6) +πn ,n∈Z
x =(-1)^(n+1)*(π/30) +πn/5 ,n∈Z.
3)
5sin2x+9cos2x=0 ;
10sinx*cosx +9(cos²x -sin²x) =0 ;
9sin²x -10sinx*cosx -9cos²x =0 ; || \cos²x ≠0
9tq²x -10tqx -9 =0 ; * * *замена t = tqx * * *
9t² -10t -9 =0 ;* * * D/4 =5² -9*(-9)= 106 * * *
[ tqx =(5-√106)/9 ; tqx =(5+√106)/9 .
x =arctq(5-√106)/9 +πn ,n∈Z или x =arctq(5+√106)/9 +πn ,n∈Z .