Алгебраическое выражение - это выражение, составленное из букв и чисел, соединенных знаками алгебраических действий: сложения, вычитания, умножения, деления, возведения в степень, извлечения корня.Найти значение алгебраического выражения - это значит найти множество всех его решений.ПОЯСНЕНИЕ. Выражения с переменными - алгебраические.Если в числовом выражении появляются буквы - это выражение становится буквенным выражением. Или выражением с переменными. Или - алгебраическим выражением. Это, практически, одно и то же. Выражение 5а +с, к примеру - и буквенное, и алгебраическое, и выражение с переменными.Почему буквенное - понятно. Ну, раз буквы есть, то любую букву можно заменять на разные числа. Поэтому буквы и называются переменными. В выражении у+5, например, у - переменная величина. Или говорят просто "переменная", без слова "величина". В отличие от цифры пять, например, которая - величина постоянная. Или просто - постоянная.Термин алгебраическое выражение означает, что для работы с данным выражением нужно использовать законы и правила алгебры. Если арифметика работает с конкретными числами, то алгебра - со всеми числами разом. Простой пример для пояснения.В арифметике можно записать, что 3 + 5 = 5 + 3. Посчитать, и все дела.Слева 8, и справа 8. А для других чисел такое равенство выполняется? Тоже можно записать и посчитать. Но чисел - бесконечное количество.. . И что, каждый раз считать? !А вот если мы подобное равенство запишем через алгебраические выражения:а + b = b + aмы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.
Моя логика такова:1) наименьшее число участников будет при наименьшем числе призеров при соблюдении нижнего предела процента призеров =1,7%;2) примем, что наименьшее число призеров =2 (из условий задачи - “призёрами” - множественное число);3) тогда, если 2 человека - 1,7% от общего числа участников, то таких участников должно быть не меньше 118 (из пропорции: 2=1,7; х=100).ответ: наименьшее возможное число школьников, участвовавших в олимпиаде, (1,7% от которого будет минимальным целым числом), составляет 118 человек.
1) 8 целых 9/11
2) 3/4