Найдем производную функции: y`(x) = 1 - 4/x^2 Приравняем ее нулю: 1-4/x^2 = 0 4/x^2 = 1 x^2 = 4 x1 = 2, x2 = -2 Нашему промежутку соответствует точка х = 2. Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка: y``(x) = 8/x^3 y``(2) = 8/8 = 1 Положительное значение второй производной, следовательно, х = 2 - точка минимума. Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка: y(1) = 1 + 4/1 = 5 y(3) = 3 + 4/3 = 4 + 1/3 y(1) = 5 больше, значит это точка максимума для данного промежутка.
Объяснение:
1 . 5) ( x + 1 )/(x²- xy ) i ( y - 1 )/(xy - y²) ;
y*(x + 1 )/xy(x - y ) i x*(y - 1)/xy(x - y ) ;
6) 6a/(a - 2b) i 3a/( a + b ) ;
6a( a + b )/(a + b)(a - 2b ) i 3a(a - 2b)/(a + b)(a - 2b ) ;
7) ( 1 + c²)/( c² - 16 ) i c/( 4 - c ) ;
( 1 + c²)/( c² - 16 ) i - c(c + 4 )/( c² - 16 ) ;
8) ( 2m + 9 )/(m² + 5m + 25 ) i m/(m - 5 ) ;
(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 ) i m( m²+5m +25 )/(m - 5)(m²+5m +25 ).