3) y=2x-2 Задаем два значения Х и получаем два значения У. х=0, у=-2 х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую. Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит. Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции