Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Стол стоит 900 грн.
Объяснение:Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч. По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение: 48/(v + 4) + 48/(v - 4) = 5 переносим 5 влево и приводим к общему знаменателю: [ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0 Числитель приравниваем к 0 и раскрываем скобки: 48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0 Раскрываем скобки и приводим подобные: 96v - 5v^2 + 80 = 0 Меняем знак: 5v^2 - 96v - 80 = 0 D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2 v1 = (48 - 52) / 5 < 0 v2 = (48 + 52) / 5 = 20 ответ: 20 км/ч.
cos(2x)-cos(3x)-cos(4x)+cos(5x)=(cos(5x)+cos(2x))-(cos(4x)+cos(3x))=
=2cos(7x/2)*cos(3x/2)-2cos(7x/2)*cos(x/2)=
=2cos(7x/2)*(cos(3x/2)-cos(x/2))=2cos(7x/2)*(-2sin(x)*sin(x/2)=
=-4sin(x/2)*cos(7x/2)*sin(x)