1.
а) 2(а+2в)
б) 3(х+4у)
в) а(6-5х)
г) 6а+а=7а
д) х(2-у)+3(2-у)=(2-у)(х+3)
е) х(3-у)+3(3-у)=(3-у)(х+у)
Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
ответ: В 10 классе 8 олимпиад
Объяснение:
С 7 по 11 - это 5 классов. 31:5 =6 и 1 в остатке. Т.е. в среднем, в год 6 олимпиад. Следовательно в 7 классе было меньше 6 олимпиад.
"В 11 классе количество олимпиад, в которых она приняла участие, возросло в 3 раза по сравнению с 7 классом", значит, число олимпиад в 11 классе делится на 3. Можно предположить, что это 9 или 12, тогда в 7 классе было 3 или 4 олимпиады. Проверяем:
классы: 7 8 9 10 11
количество олимпиад: 4 5 6 7 12 = 34 - это минимум при данном предположении - не подходит. Тогда остается в 7 классе - 3 и в 11 - 9 олимпиад. Получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 4 5 6 9 = 27 Надо добавить еще 4. Эти 4 единицы можно добавить в 8, 9 и 10 классы. Тогда получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 5 6 8 9 = 31. А по-другому распределить эти четыре единицы так, что бы "В каждом следующем учебном году она участвовала в бОльшем количестве олимпиад, чем в предыдущем" не получится. Таким образом, ответ: В 10 классе Настя приняла участие в 8 олимпиадах.
.
Объяснение:
2(а+2в)
3(х+4у)
а(6-5х)
а(3а+1)
х(2-у)+3(2-у)=(2-у)(х+3)
х(3-у)+3(3-у)=(3-у)(х+у)
2)
2х²-8х=0
2х(х-4)=0
2х=0. х-4=0
х=0. х=4
Б)
3х²+7х=0
х(3х+7)=0
х=0. 3х+7=0
х=0. 3х=-7
х=0 х=-7/3( минус семь третьих)