М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shrnv
shrnv
08.05.2020 01:01 •  Алгебра

1) Разложите на множители.

а) 2а+4в
б) 3х+12у
в)6а-5ах
г) 3а^2+а
д) 2х+6-ху-3у
е) 3х+9-ху-3у

2) Решить уравнение.

а) 2х^2-8х=0
б) 3х2+7х=0

👇
Ответ:
marisshechka1
marisshechka1
08.05.2020

.

Объяснение:

2(а+2в)

3(х+4у)

а(6-5х)

а(3а+1)

х(2-у)+3(2-у)=(2-у)(х+3)

х(3-у)+3(3-у)=(3-у)(х+у)

2)

2х²-8х=0

2х(х-4)=0

2х=0. х-4=0

х=0. х=4

Б)

3х²+7х=0

х(3х+7)=0

х=0. 3х+7=0

х=0. 3х=-7

х=0 х=-7/3( минус семь третьих)

4,5(37 оценок)
Ответ:
ryenasssss
ryenasssss
08.05.2020

1.

а) 2(а+2в)

б) 3(х+4у)

в) а(6-5х)

г) 6а+а=7а

д) х(2-у)+3(2-у)=(2-у)(х+3)

е) х(3-у)+3(3-у)=(3-у)(х+у)

4,7(89 оценок)
Открыть все ответы
Ответ:

Відповідь:

Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.

Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.

Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,

8 + 9 + 2,  мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:

8 + 2 + 9 = 10 + 9 = 19.

4,6(61 оценок)
Ответ:
natalie1m222
natalie1m222
08.05.2020

ответ: В 10 классе 8 олимпиад

Объяснение:

С 7 по 11 - это 5 классов. 31:5 =6 и 1 в остатке. Т.е. в среднем, в год 6 олимпиад. Следовательно в 7 классе было меньше 6 олимпиад.

"В 11 классе количество олимпиад, в которых она приняла участие, возросло в 3 раза по сравнению с 7 классом", значит, число олимпиад в 11 классе делится на 3. Можно предположить, что это 9 или 12, тогда в 7 классе было 3 или 4 олимпиады. Проверяем:

классы:                           7  8  9  10  11

количество олимпиад:   4  5  6  7  12 = 34 - это минимум при данном предположении - не подходит. Тогда остается в 7 классе - 3 и в 11 - 9 олимпиад. Получаем:

классы:                           7  8  9  10  11

количество олимпиад:   3  4  5  6  9 =  27 Надо добавить еще 4. Эти 4 единицы можно добавить в 8, 9 и 10 классы. Тогда получаем:

классы:                           7  8  9  10  11

количество олимпиад:   3  5  6  8  9 = 31. А по-другому распределить эти четыре единицы так, что бы "В каждом следующем учебном году она участвовала в бОльшем количестве олимпиад, чем в предыдущем" не получится. Таким образом, ответ: В 10 классе Настя приняла участие в 8 олимпиадах.

4,5(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ