1) х4-5х2+4=0 тк это биквадратное уравнение то пусть х2= t, где t - неотрицательное число тогда: - 5t + 4=0 по т. виета t1= 4 t2 = -1, не подходит по условию остается только t=4 вернемся к исходной переменной х2=4 х=2 или х=-2 2)2 - -1=0 так же обозначаем за t, t- неотрицательноe 2 -t-1=0 d=1+4*2*1=9 t1=1 t2=-0.5, не подходит по условию вернемся к исходной переменной =1 х=1 или х=-1
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число